
NASA’s Scientific Visualization Studio / Public domain

HANNES ALFVÉN. FREE ENERGY THE ELECTRONIC UNIVERSE.
I have done a little bit of reading into Plasma Cosmology. I have been inspired by the writing of Maurice Cotteral and various writings about Nikola Tesla and have come across yesterday Hannes Alfvén a Swedish Plasma Physicist.
Anyway this from Wikipedia on the Aurora Borealis.
Boston operator (to Portland operator): “Please cut off your battery [power source] entirely for fifteen minutes.”
Portland operator: “Will do so. It is now disconnected.”
Boston: “Mine is disconnected, and we are working with the auroral current. How do you receive my writing?”
Portland: “Better than with our batteries on. – Current comes and goes gradually.”
Boston: “My current is very strong at times, and we can work better without the batteries, as the aurora seems to neutralize and augment our batteries alternately, making current too strong at times for our relay magnets. Suppose we work without batteries while we are affected by this trouble.”
Portland: “Very well. Shall I go ahead with business?”
Boston: “Yes. Go ahead.”
The effect of the Aurora on the electric telegraph is generally to increase or diminish the electric current generated in working the wires. Sometimes it entirely neutralizes them, so that, in effect, no fluid is discoverable in them . The aurora borealis seems to be composed of a mass of electric matter, resembling in every respect, that generated by the electric galvanic battery. The currents from it change coming on the wires, and then disappear: the mass of the aurora rolls from the horizon to the zenith.[27]
[EDIT]ORIGIN
Aurora australis (11 September 2005) as captured by NASA’s IMAGE satellite, digitally overlaid onto The Blue Marble composite image. An animation created using the same satellite data is also available.
Knowing (2009)
Description[edit]

Follow a CME as it passes Venus then Earth, and explore how the Sun drives Earth’s winds and oceans.
Coronal mass ejections release large quantities of matter and electromagnetic radiation into space above the Sun’s surface, either near the corona (sometimes called a solar prominence), or farther into the planetary system, or beyond (interplanetary CME). The ejected material is a magnetized plasma consisting primarily of electrons and protons. While the terrestrial effects of solar flares are very fast (limited by the speed of light), CMEs are relatively slow, developing at the Alfvén speed.[6]
Coronal mass ejections are associated with enormous changes and disturbances in the coronal magnetic field. They are usually observed with a white-light coronagraph.
Cause[edit]
The phenomenon of magnetic reconnection is closely associated with CMEs and solar flares.[7][8] In magnetohydrodynamic theory, the sudden rearrangement of magnetic field lines when two oppositely directed magnetic fields are brought together is called “magnetic reconnection”. Reconnection releases energy stored in the original stressed magnetic fields. These magnetic field lines can become twisted in a helical structure, with a ‘right-hand twist’ or a ‘left hand twist’. As the Sun’s magnetic field lines become more and more twisted, CMEs appear to be a ‘valve’ to release the magnetic energy being built up, as evidenced by the helical structure of CMEs, that would otherwise renew itself continuously each solar cycle and eventually rip the Sun apart.[9]
On the Sun, magnetic reconnection may happen on solar arcades—a series of closely occurring loops of magnetic lines of force. These lines of force quickly reconnect into a low arcade of loops, leaving a helix of magnetic field unconnected to the rest of the arcade. The sudden release of energy during this process causes the solar flare and ejects the CME. The helical magnetic field and the material that it contains may violently expand outwards forming a CME.[10] This also explains why CMEs and solar flares typically erupt from what are known as the active regions on the Sun where magnetic fields are much stronger on average.
Satellite photo of aurora borealis stretching across Quebec and Ontario in the early morning of 8 October 2012.
Impact on Earth[edit]
When the ejection is directed towards Earth and reaches it as an interplanetary CME (ICME), the shock wave of traveling mass causes a geomagnetic storm that may disrupt Earth’s magnetosphere, compressing it on the day side and extending the night-side magnetic tail. When the magnetosphere reconnects on the nightside, it releases power on the order of terawatt scale, which is directed back toward Earth’s upper atmosphere.
Solar energetic particles can cause particularly strong aurorae in large regions around Earth’s magnetic poles. These are also known as the Northern Lights (aurora borealis) in the northern hemisphere, and the Southern Lights (aurora australis) in the southern hemisphere. Coronal mass ejections, along with solar flares of other origin, can disrupt radio transmissions and cause damage to satellites and electrical transmission line facilities, resulting in potentially massive and long-lasting power outages.[11][12]
Energetic protons released by a CME can cause an increase in the number of free electrons in the ionosphere, especially in the high-latitude polar regions. The increase in free electrons can enhance radio wave absorption, especially within the D-region of the ionosphere, leading to Polar Cap Absorption (PCA) events.
Humans at high altitudes, as in airplanes or space stations, risk exposure to relatively intense solar particle events. The energy absorbed by astronauts is not reduced by a typical spacecraft shield design and, if any protection is provided, it would result from changes in the microscopic inhomogeneity of the energy absorption events.[citation needed]